散列表
散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。
这就是典型的散列思想。其中,参赛选手的编号我们叫做键(key)或者关键字。我们用它来标识一个选手。我们把参赛编号转化为数组下标的映射方法就叫作散列函数(或“Hash 函数”“哈希函数”),而散列函数计算得到的值就叫作散列值(或“Hash 值”“哈希值”)
散列函数计算得到的散列值是一个非负整数; 如果 key1 = key2,那 hash(key1) == hash(key2); 如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)。
我们常用的散列冲突解决方法有两类,开放寻址法(open addressing)和链表法(chaining)。
开放寻址法 如果某个数据经过散列函数散列之后,存储位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。
链表法链表法是一种更加常用的散列冲突解决办法,相比开放寻址法,它要简单很多。我们来看这个图,在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中
常用的英文单词有 20 万个左右,假设单词的平均长度是 10 个字母,平均一个单词占用 10 个字节的内存空间,那 20 万英文单词大约占 2MB 的存储空间,就算放大 10 倍也就是 20MB。对
假设我们有 10 万条 URL 访问日志,如何按照访问次数给 URL 排序?
遍历 10 万条数据,以 URL 为 key,访问次数为 value,存入散列表,同时记录下访问次数的最大值 K,时间复杂度 O(N)。
如果 K 不是很大,可以使用桶排序,时间复杂度 O(N)。如果 K 非常大(比如大于 10 万),就使用快速排序,复杂度 O(NlogN)。
如何设计散列函数 首先,散列函数的设计不能太复杂。过于复杂的散列函数,势必会消耗很多计算时间,也就间接地影响到散列表的性能。其次,散列函数生成的值要尽可能随机并且均匀分布,这样才能避免或者最小化散列冲突,而且即便出现冲突,散列到每个槽里的数据也会比较平均,不会出现某个槽内数据特别多的情况。
开放寻址法的优点 我总结一下,当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的ThreadLocalMap使用开放寻址法解决散列冲突的原因。
链表法 我总结一下,基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。
工业级散列表
支持快速地查询、插入、删除操作;
内存占用合理,不能浪费过多的内存空间;
性能稳定,极端情况下,散列表的性能也不会退化到无法接受的情况。
最后更新于
这有帮助吗?