✨
blog
  • Blog
  • Element-UI
    • 2019-09-04
  • JS
    • ES6 之 Set 和 Map
    • let 和 const 声明常见概念
    • 元编程
    • ES6之字符串的扩展
    • ES6 之异步流程的前世今生(上)
    • ES6之异步流程的前世今生(下)
    • ES6 之模块你知吗
    • ES6 之解构赋值与箭头函数的妙用
    • 迭代器
    • ES5 之原型(一)
    • ES6之类(二)
    • es7之装饰器
    • es6之数组详解
    • js之this指向
    • 对象
    • vue项目配合使用canvas联动
    • 本文解决痛点:对象里面是否有值
  • MAC
    • vue源码之method
    • Mac的使用技巧
    • 前文
    • Mac常用软件(二)
    • 如何查看 Mac 端口号以及占用情况
  • Node
    • Node之Buffer详解
    • 浏览器与 node 的事件循环(event loop)有何区别
    • Node之多线程
    • node之模块解析(一)
    • 错误捕获与内存告警
  • TS
    • Record
    • 使用方法
    • 工具泛型
    • 类型体操
    • 泛型
  • chrome
    • v8 引擎
    • v8 垃圾回收机制
    • 浏览器的知识
  • flutter
    • 路由
    • 页面布局
  • go
    • index
  • html&css
    • 两栏布局
    • ES5和ES6的区别
    • ES5 和 ES6 的区别
    • HTTP详解
    • TCP 与 UDP 的区别
    • MDN
    • css modules 使用教程
    • css 居中
    • 拖拽
    • flex布局
    • h5 新增特性 html5
    • history 与 hash 路由策略
    • position 定位方式
    • rem布局
    • svg
    • web性能优化
    • 事件循环
    • 从输入网址后发生了什么
    • 前端状态管理
    • 圣杯布局与双飞翼
    • 性能优化 页面的性能统计指标
    • 本地存储的几种对比
    • 浏览器的渲染进程
    • 浏览器缓存策略详解
    • 盒模型
    • 为什么要移动端适配
    • 跨域的 N 种实现方式
  • web3
    • 常见概念
    • vue项目配合使用canvas联动
  • webgl
    • Mac使用技巧(二)
    • Node之模块解析path
  • 代码库
    • documeng的一些常见操作
    • eventBus事件
    • jquery提交
    • jquery的一些常见操作
    • 常见操作
    • 数组polyfill
    • TS代码片段
      • 面试官眼中的test unit
  • 全年安排
    • AfterShip
    • 大企业
  • 函数编程题
    • Promise问题
    • 继承
  • 前端早早聊
    • vue生态
    • 开发一款VScode语言插件
    • 简历回顾和进行复盘
    • 重新认知性能优化及其度量方法
    • 2022-09-17-音视频专场.md
      • 2022-09-17-音视频专场
    • 前端晋升专场
      • 成长的诀窍是靠自己
      • 销销帮
    • 前端监控专场
      • 字节前端监控实践
      • 李港:大前端-从无到有搭建自研前端监控系统
    • 前端跳槽
      • 50个面试官在线招聘
      • 如何识别优秀的前端猎头来跳槽大厂
      • 面试套路
    • 支付宝
      • 面试
    • 管理专场
      • 芋头:管理者眼中的web技术发展前沿
    • 组件专场
      • 基于webCompents的跨技术组件库实践
    • 面试
      • 面试辅导问题
      • 早早聊面试
      • 前端沙箱是什么? 怎么实现沙箱环境?
  • 常见总结
    • 2018年终总结-年底了,你总结了吗?我先来
    • 在逆境中成长
    • 2021年终总结
    • 2024年全年总结
    • 项目
    • Tell2.0 前端复盘
    • 复盘
    • 前端工程师素养
    • 学习方法论
    • 希望与破晓| 2022 年终总结
    • 新起点, 新征途 | 掘金年度征文
    • 稳定| 2023 年终总结
    • 趁着有风快飞翔 | 2019 年终总结
    • AfterShip
      • Emotion:用 JavaScript 编写 CSS 的强大工具
      • 个人中长期目标
      • 事故复盘
      • 时间解析
      • 国内外区别
      • 独立站建设
    • MEIZU
      • NativeApp与H5通信原理
      • SSR 原理
      • SSR的常见问题
      • CLI
      • electron 应用发布流程
      • electron
      • electron 面试
      • 数据结构与算法之美
      • mgc 一期复盘
      • 架构原理
      • 喵币管理
      • 三期复盘总结
      • 异常监控之 sentry 实践
      • 微前端
      • qiankun 原理解析
      • 快游戏一期
      • 游戏中心复盘
    • 个人准则
      • index
    • 编程猫
      • pc 接入 micro bit 方案
      • prompt engineer
      • web work 跨域解析与解决方式
      • web 中的 ai
      • 低版本 node 环境下 ffmpeg 的使用
      • 关于 taobao 源 https 过期
      • 加密 json
      • 安卓 5 和 6 的白屏解决
      • 性能排查与优化实践
      • 探月接入
      • 接入硬件
      • 新生态下的state
      • monorepo 包管理方式
      • 自修复 npm 库
      • 音频的绘制
    • 谨启
      • 音视频
      • 小程序
        • taro 规范
        • 结合 mobx 在跳转前预请求
        • Taro 浅析用法与原理
        • 前文
        • 小程序优化指南
        • 小程序内部实现原理
        • 支付相关
    • tencent
      • TAPD
        • MathJax的食用
        • canvas渲染优化策略
        • 为什么 JavaScript 是单线程的呢?
        • svg 总是不对
        • 前端库
        • 原生端和js端如何通信
        • 在旧项目中复用vue代码
        • 提升自我
        • 批量编辑优化
        • 插入业务对象
        • 编辑器
        • 挂载点
        • 性能优化对比
        • 遇到的问题
        • 项目迁移公告
        • 领导力
      • 行家
        • 实战篇
        • 职业发展、领导力、个人成长
        • 高质量沟通
  • 慕课网
    • react-native原理
    • react-native学习
  • 杂文
    • Dom 节点变动检测并录制的简单实现
    • 错误监控&错误捕获
    • NextJS与NuxtJS
    • 负载均衡的几种常用方式
    • PM2
    • service worker 控制网络请求?
    • SSL 和 TLS 的区别
    • Babel 你太美
    • echart踩坑经验
    • keyup、keydown你都知道有什么区别吗
    • 常见概念
    • 首屏加载优化与性能指标分析
    • preload 和 prefetch 的详解
    • 在项目中配置这几个关系
    • roullp 解析
    • tinymce原理浅析
    • wasm 在前端的应用
    • websocket
    • webworker
    • 项目
    • 从 ajax 到 axios
    • 从postcss 到自己开发一款插件
    • 从输入浏览器到页面展示涉及的缓存机制
    • 代码整洁之道
    • 你知道什么是aop吗
    • 函数式编程
    • 函数式编程指南
    • 前端input框文字最大值
    • 攻坚战
    • 前端书写 sdk
    • 前端文字转语音播放
    • 前端领域的 Docker 和 Kubernetes
    • 前端安全
    • 前端进阶之内存空间
    • 前端音频浅析
    • 十分钟搞定多人协作开发
    • 字符串的比较
    • 尾递归
    • 前文
    • 常见的算法可以分为以下三类
    • 手机调试--mac篇
    • 数组的原生系列
    • COOP 和 COEP - 新的跨域策略
    • 浅谈react组件书写
    • 浏览器与 Node.js 事件循环的区别
    • 由三道题引伸出来的思考
    • 移动端300ms点击延迟
    • 移动端和pc端事件
    • Git 常见疑惑
    • 我们离发 npm 包还有多远
    • 重绘和重排
    • AI 时代下的前端编程范式
    • 音频可视化实战
  • 极客时间
    • Serverless入门课
    • 二分查找
    • 二叉树
    • 全栈工程师
    • 动态规划面试宝典
    • 前端与rust
    • 散列表
    • 前端方面的Docker和Kubernetes
    • 栈
    • 深入浅出区块链
    • 玩转 vue 全家桶
    • 玩转 webpack
    • 程序员的个人财富课
    • 算法
    • 说透元宇宙
    • 跳表
    • 链表
    • 10x 程序员工作法
      • index
    • Node开发实战
      • HTTP服务的性能测试
      • JavaScript语言精髓与编程实战
      • 什么是node。js
      • svg精髓
    • ReactHooks核心原理与实战
      • ReactHooks核心原理与实战
    • Rust
      • Rust编程第一课
      • 前置篇
      • 深度思维
      • 重构
      • 类型体操
      • 基础知识
    • WebAssembly入门课.md
      • 基础篇
      • SSR的注水和脱水
      • jsBriage通信原理
      • 基础知识篇
    • 互联网的英语私教课
      • 互联网人的英语私教课
    • 代码之丑
      • 代码之丑
    • 前端全链路优化实战课
      • 网页指标
    • 图解 Google V8
      • 图解 Google V8
    • 浏览器工作原理与实践
      • 浏览器工作原理与实践
    • 算法面试通关 40 讲
      • 算法面试通关40讲
    • 跟月影学可视化
      • index
    • 软件设计之美
      • 软件设计之美
    • 重学前端
      • js
  • 后续的文件增加都会增加到上面并以编号对应
    • 1029. 两地调度
    • 151.翻转字符串里的单词
    • 2022.3.15
    • 前端数据结构
    • 前端常见算法
    • 前端常见排序
    • 恢复一棵树
  • 设计模式
    • 前端常见设计模式之MVC与MVVM
    • 前端之代理模式
    • 前端常见设计模式之单例模式
    • 前端常见设计模式之发布订阅模式
    • 前端之工厂模式
    • 观察者模式
    • 前端常见设计模式之适配器模式
  • 译文
    • [译] 如何使用CircleCI for GitHub Pages持续部署
    • 您是否优化了 API 的性能
    • [译][官方] Google 正式发布 Flutter 1.2 版本
    • 什么是 Deno ,它将取代 NodeJS ?
  • 读后感
    • JavaScript二十年
    • 1368个单词就够了
    • js编程精解
    • labuladong 的算法小抄
    • lodash常用方法
    • vue的设计与实现
    • 所有的静态资源都是get请求
    • 人生
    • 人生护城河
    • 你不知道的JavaScript
    • 前端核心知识进阶
    • 华为工作法
    • 反脆弱
    • 好好学习
    • 左耳听风
    • 摩托车维修之道
    • 数学之美
    • 深入理解svg
    • 浏览器的ESM到底是啥
    • 经济学原理
    • 编程珠玑
    • 防御式 css 精讲
    • 韭菜的自我修养
  • 雪狼
    • 2022-07-17
    • 基础知识
    • 阶一课程
      • 实战辅导一
      • 实战辅导二
  • 嵌入式
    • 树莓派
      • 排序
  • 源码
    • React
      • 核心知识点
      • errorBoundaries
      • immutable.js 的实现原理
      • React.Suspense
      • react源码分析之Fiber
      • batchedUpdate
      • Component
      • Context
      • react 源码分析之 diff 算法
      • React 中的 key 属性:原理、使用场景与注意事项
      • 使用方式
      • react源码分析之memo
      • react 源码分析之mixin
      • 实战篇
      • react源码分析之react-dom
      • 使用方式
      • scheduleWork
      • useImperativeHandle的使用与原理
      • React 书写小技巧
      • 入口和优化
      • 合成事件和原生事件的区别
      • react 性能优化
      • 构建一个 hooks
      • 浅析 styled-components
      • 生命周期
      • 组合 vs 继承
      • 通信机制
      • 高阶组件
      • 慕课网
        • 应用篇
        • 课程导学
    • ReactHook
      • useCallback
      • useContext
      • useEffect 与 useLayoutEffect
      • useHook
      • useMemo
      • useReducer
      • 原理
      • useState
      • 总结
    • Redux
      • mobx 原理解析
      • redux-saga
      • redux-thunk
      • Mobx 和 Redux 对比
      • 使用方法
      • redux 原理
    • Vite
      • Vite原理
      • Vite配置
      • 热更新原理
      • vite 为什么生产环境用 Rollup
    • Webpack
      • PostCSS
      • Webpack5 核心原理与应用实践-loader
      • Webpack5 核心原理与应用实践-plugin
      • Webpack5 核心原理与应用实践
      • 区分
      • 升级详情
      • treeShaking(树摇Tree Shaking)
      • 编写一个自己的webpack插件plugin
      • 代码分离(code-splitting)
      • webpack 打包优化
      • 基础配置
      • webpack 打包优化
      • webpack 工作原理
      • webpack 按需加载原理
      • webpack 热更新 HMR(Hot Module Replacement)
      • 缓存
      • webpack 自定义 plugin
    • next
      • tailwind
      • 什么是水合
    • sveltejs
      • index
    • tinymce
      • 并发篇
    • 源码手写系列
      • create
      • call
      • bind
      • call
      • es6 单例
      • forEach vs Map
      • instanceOf
      • new
      • reduce
      • 取两个重复数组的交集
      • 函数柯理化
      • 动态规划
      • 基于Generator函数实现async
      • 新建 js 文件
      • 手写一个 slice 方法
      • 手写一个 webpack loader
      • Plugin
      • 手写一个寄生组合式继承
      • 二叉树
      • 链表相关的操作
      • 手动实现发布订阅
      • 数组去重
      • 数组扁平化
      • 数组
      • 构造大顶堆和小顶堆
      • 深浅拷贝 深拷贝
      • 两者对比
    • vue
      • vue2
        • vm.attrs与$listeners
        • vue 和 react 的 diff 算法比较
        • vue 源码分析
        • vue 优化的 diff 策略
        • extends
        • 核心原理篇
        • keep-alive
        • vue 源码分析之 mixins
        • vue 源码分析之 nextTick
        • vue之slot
        • vnode
        • vue 源码分析之 watch
        • 原理
        • vue 源码分析之transition
        • vue 源码分析之异步组件
        • 调用的是 watch
        • 安装
        • react源码分析之portals
        • event 的实现原理(事件的实现原理)
        • 什么是h
        • 分析provide 和 inject
        • vue 源码分析之 use
        • v-model
        • vue源码分析之vuex
        • 响应式原理
        • 初始化的流程
        • 组件更新
        • 编译
        • 父子组件生命周期
        • 原理
        • 多实例
        • Vue 面试
        • 源码研读一
        • 响应式原理
        • 常见问题
        • 数组的劫持
        • vue之自定义指令
        • 运行机制全局概览
      • vue3相比vue2的提升点
        • vue composition api
        • vue3的虚拟dom优化
        • vue3层面的双向数据绑定
        • 预处理优化
  • 重构
    • notification
      • 讲解
  • 面试
    • AfterShip经历
      • JS对URL进行编码和解码
      • ShippingLabelTemplate
      • 接入keycloak详解
      • reCAPTCHA接入
      • yalc与动态解决升级的依赖包
      • RBAC 简介
      • 多语言计划
      • 接入Google登录及其主动弹出快捷登录方式
      • 读书计划
        • 传染
        • 这就是OKR
    • 编程猫经历
      • 2024.1.16
      • 2025.2.20
      • 2025.2.21
      • 2025.2.26
      • 2025.3.28
      • 2025.3.3
      • 2025.3.7
      • 行动轨迹
      • 面试主观题
    • 腾讯经历
      • 2022.02.21
      • 2022.03.30
      • 2022.04.24
      • 2022.04.25
      • 2022.04.27
      • 2022.04.28
      • 2022.04.29
      • 2022.05.05
      • 不同公司的面试关注点不同
      • 2022.05.07
      • 2022.05.09
      • 2022.05.10
      • 2022.05.11
      • 2022.05.12
      • 2022.05.13
      • 2022.05.16
      • 2022.05.17
      • 2022.05.19
      • 2022.05.27
      • 面试
      • 行动轨迹
      • 面试主观题
    • 针对字节
      • 2022.05.14
      • 2022.05.17
      • HR面试准备
      • Promise的相关题目
      • React 进阶实践指南(二)
      • React 面试准备
      • vue 与 react 有什么不同 (react 和 vue 有什么区别)
      • TypeScript 全面进阶指南
      • cookie和session区别
      • express 面试准备 koa 中间件原理
      • next面试准备
      • requestCallBack
      • interface 与 type 异同点
      • 取消 promise
      • 如何设计一个前端项目
      • 进阶篇
      • 早早聊面试准备
      • 自动化部署
      • 挖掘项目的深度
      • 面试
      • 出题指数
    • 魅族经历
      • 2020.09.11
      • 一灯
      • 一灯
      • 一灯
      • 2020.09.20
      • 2020.09.21
      • 网易二面
      • 2020.09.23
      • 头条
      • 360 金融面试题
      • 富途一面
      • 算法
      • 字节
      • 2020.11.04
      • baidu 一面
      • meta 标签的作用
      • 字节
      • 2020.11.22
      • 2020.11.25
      • 微前端接入笔记
      • 面试的基本原则
由 GitBook 提供支持
在本页

这有帮助吗?

  1. 极客时间
  2. WebAssembly入门课.md

基础篇

上一页WebAssembly入门课.md下一页SSR的注水和脱水

最后更新于2个月前

这有帮助吗?

开篇词 | 我们为什么要了解 WebAssembly?

“WebAssembly 是基于栈式虚拟机的虚拟二进制指令集(V-ISA),它被设计为高级编程语言的可移植编译目标”。

Wasm 的出现更能够让我们直接在 Web 平台上,使用那些业界已存在许久的众多优秀的 C/C++ 代码库。

webAssembly 是一种能在浏览器运行的低级程序语言,可以将 c++或者 rust 编译成 webAssembly ,webAssembly 可以与 js 互相调用.

Wasm 不限于 C/C++ 哈,也可以尝试使用 Rust 或者基于 TypeScript 语法的 AssemblyScript。

01 | 基础篇:学习此课程你需要了解哪些基础知识?

TypedArray

顾名思义,TypedArray 便是指“带有类型的数组”,我们一般简称其为“类型数组”。我们都知道,在默认情况下,出现在 JavaScript 代码中的所有数字值,都是以“双精度浮点”的格式进行存储的。

一个普通 JavaScript 数组,对于数组内部的每一个元素,我们都可以重新将其赋值为双精度浮点类型所能表示值范围内的,任意一个值。

而 TypedArray 则不同于传统的 JavaScript 数组。TypedArray 为内部的元素指定了具体的数据类型,比如 Int8 表示的 8 位有符号整型数值、Float32 表示的 32 位单精度浮点数值,以及 Uint32 表示的 32 位无符号整型数值等等。

TypedArray 实际上构建于底层的“二进制数据缓冲区”,在 JavaScript 中可以由 ArrayBuffer 对象来生成。ArrayBuffer 描述了一个字节数组,用于表示通用的、固定长度的原始二进制数据缓冲区。

由于 ArrayBuffer 中的数据是以“字节”为单位进行表示的,因此我们无法直接通过 ArrayBuffer 对象来操作其内部的数据,而是要通过 TypedArray 以某个固定的“类型视图”,按照某个具体的“数据单位量度”来操作其内部数据。

const DEFAULT_INDEX = 0;
// Way one:
const int8Arr = new Int8Array(10);
int8Arr[DEFAULT_INDEX] = 16;
console.log(int8Arr); // Int8Array [16, 0, 0, 0, 0, 0, 0, 0, 0, 0].

// Way two:
const int32Arr = new Int32Array(new ArrayBuffer(16));
int32Arr.set([1, 2, 3], 0);
console.log(int32Arr); // Int32Array [1, 2, 3, 0].

这里我列出了两种 TypedArray 的使用方式。第一种,我们可以直接通过相应类型的 TypedArray 构造函数来构造一个类型数组。比如这里我们使用的 Int8Array,其构造函数的参数为该数组可以容纳的元素个数。然后,我们修改了数组中第一个元素的值,并将整个数组的内容“打印”了出来。

第二种使用方式其实与第一种十分类似,唯一的不同是我们选用了另一种 TypedArray 的构造函数类型。该构造函数接受一个 ArrayBuffer 对象作为其参数,生成的 TypedArray 数组将会以该 ArrayBuffer 对象作为其底层的二进制数据缓冲区。

由于 ArrayBuffer 的构造函数其参数指定了该 ArrayBuffer 所能够存放的单字节数量,因此在“转换到”对应的 TypedArray 时,一定要确保 ArrayBuffer 的大小是 TypedArray 元素类型所对应字节大小的整数倍。

在方法二中,我们使用了 TypedArray.prototype.set 方法将一个普通 JavaScript 数组中的元素,存放到了刚刚生成的,名为 int32Arr 的类型数组中。

#include <iostream>
extern "C" {
  int add(int x, int y) {
    return x + y;
  }
}
int main(int argc, char** argv) {
  int x = add(0, 1);
  std::cout << x;
  return 0;
}

C++ 编译器会强制以 C 语言的语法规则,来编译放置在这个作用域内的所有 C++ 源代码。而在 C 语言的规范中,没有“函数重载”这类特性,因此也不会对函数名进行 “Name Mangling” 的处理

02 | 历史篇:为什么会有 WebAssembly 这样一门技术?

Wasm 的前身 —— ASM.js

ASM.js 的设计目标也是为了能够在 JavaScript 语言之外,为“构建更高性能的 Web 应用”这个目标,提供另外一种实现的可能。

第一,ASM.js 是 JavaScript 的严格子集。这也就意味着,对于一段 ASM.js 代码,JavaScript 引擎可以将它视作普通的 JavaScript 代码来执行,这便保障了 ASM.js 在旧版本浏览器上的可移植性。

第二,ASM.js 使用了 “Annotation(注解)” 的方式来标记代码中包括:函数参数、局部 / 全局变量,以及函数返回值在内的各类值的实际类型。

function asm(stdin, foreign, heap) {
  "use asm";

  function add(x, y) {
    x = x | 0; // 变量 x 存储了 int 类型值;
    y = y | 0; // 变量 y 存储了 int 类型值;
    var addend = 1.0,
      sum = 0.0; // 变量 addend 和 sum 默认存放了"双精度浮点"类型值;
    sum = sum + x + y;
    return +sum; // 函数返回值为"双精度浮点"类型;
  }
  return { add: add };
}

在上述 asm 模块内定义的内联函数 add 中,我们在其开头的前两行代码通过 “x|0” 和 “y|0” 的方式,分别对变量 x 与 y 的值类型进行了标记。而这种方式便是我们之前提到的 ASM.js 所使用的 Annotation。

当 JavaScript 引擎在编译这段 ASM.js 代码时,便会将这里的变量 x 与 y 的类型视为 int 整型。同样的,还有我们对函数返回值的处理 “+sum”。通过这样的 Annotation,引擎会将变量 sum 的值视为双精度浮点类型。类似的,ASM.js 在标准中还规定了其他的诸多 Annotation 形式,可以将变量值标记为不同的类型,甚至对值类型进行转换。

并不是说只要为函数添加了 “use asm” 指令,并且为使用到的变量添加 Annotation 之后,JavaScript 引擎就会通过 AOT 的方式来优化代码的执行

从过去到未来

这个 Prototype 和对应的字节码格式,便是如今 Wasm 所分别对应的 WAT 可读文本格式与二进制字节码格式。这两部分暂时被称为 ml-proto 与 v8-native-prototype。

AssemblyScript

03 | WebAssembly 是一门新的编程语言吗?

“WebAssembly(缩写为 Wasm)是一种基于堆栈式虚拟机的二进制指令集。

堆栈机模型

堆栈机,全称为“堆栈结构机器”,即英文的 “Stack Machine”。堆栈机本身是一种常见的计算模型。

基于堆栈机模型实现的计算机,无论是虚拟机还是实体计算机,都会使用“栈”这种结构来实现数据的存储和交换过程。栈是一种“后进先出(LIFO)”的数据结构,即最后被放入栈容器中的数据可以被最先取出。

寄存器机与累加器机

顾名思义,基于这种计算模型的机器,将使用特定的 CPU 寄存器组,来作为指令执行过程中数据的存储和交换容器。

在寄存器机中,由于每一条参与到数据交换和处理的指令,都需要显式地标记操作数所在的寄存器(比如通过别名的方式),因此相较于堆栈机和累加器机,寄存器机模型下的指令相对更长。但相对地,数据的交换过程也变得更加灵活。

累加器机

由于累加器的存储容量有限,因此对于一些需要进行暂存的中间数据,通常都只能够被存放到机器的线性内存中。又由于访问线性内存的速度,一般远远低于访问寄存器的速度,因此从某种程度上来讲,累加器机的指令整体执行效率会相对较低。

三种计算模型的比较

  • 堆栈机使用栈结构作为数据的存储与交换容器,由于其“后进先出”的特性,使得我们无法直接对位于栈底的数据进行操作。因此在某些情况下,机器会使用额外的指令来进行栈数据的交换过程,从而损失了一定的执行效率。但另一方面,堆栈机模型最为简单且易于实现,对应生成的指令代码长短大小适中。

  • 累加器机由于其内部只有一个累加器寄存器可用于暂存数据,因此在指令的执行过程中,可能会频繁请求机器的线性内存,从而导致一定的性能损耗。但另一方面,由于累加器模型下的指令最多只能有一个操作数,因此对应的指令较为精简。

  • 寄存器机内大多数与数据操作相关的指令,都需要在执行时指定目标寄存器,这无疑增加了指令的长度。过于灵活的数据操作,也意味着寄存器的分配和使用规则变得复杂。但相对的,众多的数据暂存容器,给予了寄存器机更大的优化空间。因此,通常对于同样的一段计算逻辑,基于寄存器机模型,可以生成更为高效的指令执行结构。

ISA 与 V-ISA

i386、X86-64 等实际存在的物理系统架构上的指令集,我们一般称之为 ISA(Instruction Set Architecture,指令集架构)。而对另外一种使用在虚拟架构体系中的指令集,我们通常称之为 V-ISA,也就是 Virtual(虚拟)的 ISA

对这些 V-ISA 的设计,大多都是基于堆栈机模型进行的。而 Wasm 就是这样的一种 V-ISA。

Wasm 之所以会选择堆栈机模型来进行指令的设计,其主要原因是由于堆栈机本身的设计与实现较为简单。快速的原型实现可以为 Wasm 的未来发展预先试错。

另一个重要原因是,借助于堆栈机模型的栈容器特征,可以使得 Wasm 模块的指令代码验证过程变得更加简单。

简单的实现易于 Wasm 引擎与浏览器的集成。基于堆栈机的结构化控制流,通过对 Wasm 指令进行 SSA(Static Single Assignment Form,静态单赋值形式)变换,可以保证即使是在堆栈机模型下,Wasm 代码也能够有着较好的执行性能。而堆栈机模型本身长短适中的指令长度,确保了 Wasm 二进制模块能够在相同体积下,拥有着更高密度的指令代码。

Wasm 虚拟指令集

Wasm 是一种基于堆栈机模型设计的 V-ISA 指令集

i32.const 1
i32.const 2
i32.add

i32.const 1 | 1 i32.const 1 | 1,1 i32.eq | 1 i32.const 10 | 1,10 i32.const 10 | 1,10,10 i32.add | 1,20 i32.mul | 20

04 | WebAssembly 模块的基本组成结构到底有多简单?

前端路线
知识结构
累加器